
INTEGRATED CIRCUITS

Product specification

1998 Jul 29

74LVC2952A

FEATURES

- 5-volt tolerant inputs/outputs, for interfacing with 5-volt logic
- Wide supply voltage range of 1.2 V to 3.6 V
- In accordance with the JEDEC standard no. 8-1 A
- Inputs accept voltages up to 5.5 V
- CMOS low power consumption
- Flow-through pin-out architecture
- 3-State outputs
- Direct interface with TTL levels
- Integrated 30Ω damping resistor

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

DESCRIPTION

The 74LVC2952A is a low-power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families. The 74LVC2952A is an octal non-inverting registered transceiver. Two 8-bit back to back registers store data flowing in both directions between two bidirectional busses. Data applied to the inputs is entered and stored on the rising edge of the clock (CPnn) provided that the clock enable \overline{CE}_{nn}) is LOW. The data is then present at the 3-State output buffers, but is only accessible when the output enable input (\overline{OE}_{nn}) is LOW. Data flow from A inputs to B outputs is the same as for B inputs to A outputs. The 74LVC2952A is identical to the 74LVC2953A but has non-inverting outputs.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay CP _{nn} to A _n , B _n	$\begin{array}{l} C_L = 50 \text{ pF}; \\ V_{CC} = 3.3 \text{ V} \end{array}$	4.3	ns
f _{max}	Maximum clock frequency	7	150	MHz
Cl	Input capacitance		5	pF
C _{I/O}	Input/output capacitance		10	pF
C _{PD}	Power dissipation capacitance per buffer	$V_{CC} = 3.3 V^1$	31	pF

NOTE:

 C_{PD} is used to determine the dynamic power dissipation (P_D in μW)

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; C_L = output load capacity in pF;

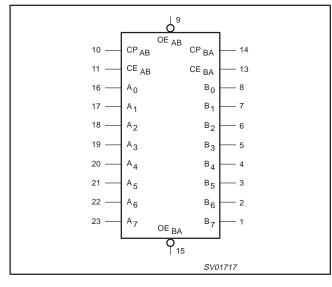
 f_o = output frequency in MHz; V_{CC} = supply voltage in V;

 $\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
24-Pin Plastic SO	-40°C to +125°C	74LVC2952A D	74LVC2952A D	SOT137-1
24-Pin Plastic SSOP Type II	-40°C to +125°C	74LVC2952A DB	74LVC2952A DB	SOT340-1
24-Pin Plastic TSSOP Type I	-40°C to +125°C	74LVC2952A PW	74LVC2952APW DH	SOT355-1

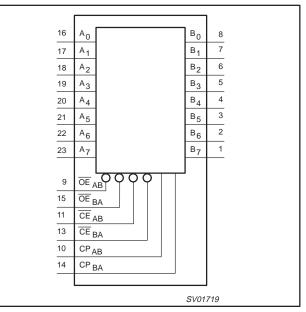
PIN CONFIGURATION


B ₇ 1	
B ₆ 2	23 A ₇
B ₅ 3	22 A ₆
B ₄ 4	21 A ₅
B ₃ 5	20 A ₄
B ₂ 6	19 A ₃
B ₁ 7	18 A ₂
B ₀ 8	17 A ₁
OE _{AB} 9	16 A ₀
CP _{AB} 10	15 OE _{BA}
CE _{AB} 11	14 CP _{BA}
GND 12	13 CE _{BA} SV01716

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
8, 7, 6, 5, 4, 3, 2, 1,	B ₀ to B ₇	B data inputs/outputs
12	GND	Ground (0 V)
9, 15	$\overline{OE}_{AB}, \overline{OE}_{BA}$	Output enable inputs (active LOW)
10, 14	CP_{AB}, CP_{BA}	Clock inputs
11, 13,	$\overline{CE}_{AB}, \overline{CE}_{BA}$	Clock enable inputs
16, 17, 18, 19, 20, 21, 22, 23	A ₀ to A ₇	A data inputs/outputs
24	V _{CC}	Positive supply voltage

74LVC2952A


LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL

FUNCTIONAL DIAGRAM

74LVC2952A

FUNCTION TABLE for register A_n or B_n

	INPUTS		INTERNAL	OPERATING
$A_n \text{ or } B_n$	CPnn	CEnn	Q	MODE
Х	Х	Н	NC	Hold data
L	↑	L	L	Load data
Н	\uparrow	L	Н	Load data

RECOMMENDED OPERATING CONDITIONS

NOTES:

HIGH voltage level Н =

LOW voltage level L =

Х don't care =

FUNCTION TABLE for output enable

INPUTS	INTERNAL	A _n or B _n OUTPUTS	OPERATING MODE	
OEnn	Q	OUTPUTS	OPERATING MODE	
Н	Х	Z	Disable outputs	
L	L	L	Enable outputs	
L	Н	Н	Enable outputs	

high impedance OFF-state Z ↑ =

Low-to-High transition =

no change NC =

SYMBOL	PARAMETER	CONDITIONS	LIM	UNIT		
STWIDOL	FARAMETER	CONDITIONS	MIN	MAX	UNIT	
Vee	DC supply voltage (for max. speed performance)		2.7	3.6	V	
Vcc	DC supply voltage (for low-voltage applications)		1.2	3.6	v	
VI	DC input voltage range		0	5.5	V	
V _{I/O}	DC output voltage range; output HIGH or LOW state		0	V _{CC}	V	
V 1/O	DC input voltage range; output 3-State		0	5.5	v	
T _{amb}	Operating free-air temperature range		-40	+85	°C	
t _r , t _f	Input rise and fall times	$V_{CC} = 1.2 \text{ to } 2.7 \text{V}$ $V_{CC} = 2.7 \text{ to } 3.6 \text{V}$	0 0	20 10	ns/V	

ABSOLUTE MAXIMUM RATINGS¹

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to +6.5	V	
I _{IK}	DC input diode current	V ₁ < 0	-50	mA	
VI	DC input voltage	Note 2	-0.5 to +6.5	V	
I _{OK}	DC output diode current	$V_{O} > V_{CC} \text{ or } V_{O} < 0$	± 50	mA	
\ <i>\</i>	DC output voltage; output HIGH or LOW	Note 2	–0.5 to V _{CC} +0.5	V	
V _{I/O}	DC output voltage; output 3-State	Note 2	-0.5 to 6.5	1 [×]	
Ι _Ο	DC output source or sink current	$V_{O} = 0$ to V_{CC}	± 50	mA	
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA	
T _{stg}	Storage temperature range		-65 to +150	°C	
Power dissipation per package P _{TOT} – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)		above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	500 500	mW	

NOTES:

1 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2

74LVC2952A

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

						LIMITS			
SYMBOL PARAMETER		TEST CONDITION	Temp = -40°C to +85°C			UNIT			
				MIN	TYP ¹	MAX			
Maria	HIGH level Input voltage	V _{CC} = 1.2V		V _{CC}			v		
V _{IH}	nigh level liput voltage	V _{CC} = 2.7 to 3.6V		2.0					
M		V _{CC} = 1.2V				GND	v		
VIL	LOW level Input voltage	V _{CC} = 2.7 to 3.6V				0.8	1		
		$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -2$	12mA	V _{CC} -0.5			V		
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -1$	V _{CC} -0.2	V _{CC}		v			
V _{OH} HIGH level	HIGH level output voltage	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -1$	V _{CC} -0.6						
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = -2$	V _{CC} -0.8			1			
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12$	2mA			0.40			
V _{OL}	LOW level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 10$	00μΑ			0.20	v		
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 24$	4mA			0.55]		
I _I	Input leakage current	V_{CC} = 3.6V; V_{I} = 5.5V or GND	Not for I/O pins		±0.1	±5	μΑ		
I _{IHZ} /I _{ILZ}	Input current for common I/O pins	V_{CC} = 3.6V; V_{I} = 5.5V or GND	-		±0.1	±15	μΑ		
I _{OZ}	3-State output OFF-state current	$V_{CC} = 3.6V; V_I = V_{IH} \text{ or } V_{IL}; V_O = 5$	5.5V or GND		0.1	±5	μΑ		
I _{off}	Power off leakage supply	$V_{CC} = 0.0V; V_{I} \text{ or } V_{O} = 5.5V$				±10	μΑ		
I _{CC}	Quiescent supply current	$V_{CC} = 3.6V; V_1 = V_{CC} \text{ or GND}; I_0 = 0$			0.1	10	μA		
ΔI_{CC}	Additional quiescent supply current per input pin	$V_{CC} = 2.7V$ to 3.6V; $V_I = V_{CC} - 0.6V$	/; I _O = 0		5	500	μA		

NOTES:

1 All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

AC CHARACTERISTICS

GND = 0 V; t_r = $t_f\,\leq\,$ 2.5 ns; C_L = 50 pF; R_L = 500 \Omega

						LIMITS				
SYMBOL	PARAMETER	WAVEFORM	V _{CC}	= 3.3V ±	0.3V	\	/ _{CC} = 2.7\	/	V _{CC} = 1.2V	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	TYP	
t _{PHL} /t _{PLH}	Propagation delay CP _{BA} , CP _{AB} to A _n , B _n	Figures 1, 4	1.5	4.1	7.6	1.5	4.4	8.6	16	ns
t _{PZH} /t _{PZL}	3-state output enable time \overline{OE}_{BA} , \overline{OE}_{AB} , to A_n , B_n	Figures 3, 4	1.5	3.9	7.6	1.5	4.7	8.6	16	ns
t _{PHZ} /t _{PLZ}	3-state output disable time \overline{OE}_{BA} , \overline{OE}_{AB} , to A_n , B_n	Figures 3, 4	1.5	3.4	6.6	1.5	3.8	7.6	8	ns
t _w	CP _{AB} , CP _{BA} pulse width, HIGH or LOW	Figure 1	3.0	1.5	-	3.0	1.5	-	-	ns
t _{su}	Set-up time HIGH or LOW A _n , B _n to CP _{AB} , CP _{BA}	Figure 2	2.0	-0.5	-	2.0	-	-	-	ns
t _{su}	$\frac{\text{Set-up time, HIGH or LOW}}{\text{CE}_{\text{AB}}, \text{CE}_{\text{BA}}} \text{ to CP}_{\text{AB}}, \text{CP}_{\text{BA}}}$	Figure 2	2.0	0.5	-	2.0	-	-	-	ns
t _h	Hold time A _n , B _n to CP _{AB} , CP _{BA}	Figure 2	1.5	0.6	-	1.5	-	-	-	ns
t _h	Hold time $\overline{CE}_{AB}, \overline{CE}_{BA}$ to CP_{AB}, CP_{BA}	Figure 2	1.5	0	-	1.5	-	-	_	ns
f _{max}	Maximum clock pulse frequency	Figure 2	100	150	_	80	-	_	_	MHz

NOTE:

These typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

74LVC2952A

AC WAVEFORMS

 $\begin{array}{l} V_M=0.6 \ V \ at \ V_{CC}=1.2 \ V \\ V_M=1.0 \ V \ at \ V_{CC}=2.0 \ V \\ V_M=1.5 \ V \ at \ V_{CC}=3.0 \ V \\ V_{OL} \ and \ V_{OH} \ are \ the \ typical \ output \ voltage \ drop \ that \ occur \ with \ the \ 3-State \ output \ load. \end{array}$

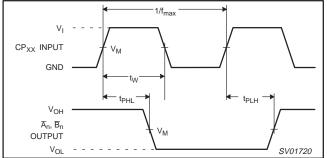


Figure 1. Clock input (CP_{BA} , CP_{AB}) to output (\overline{B}_n , \overline{A}_n) propagation delays, the clock pulse width and the maximum clock frequency.

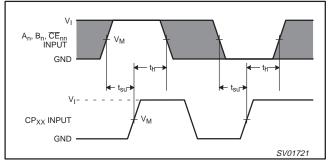


Figure 2. Set-up and hold times for the A_n, B_n and \overline{CE}_{nn} inputs. NOTE:

The shaded areas indicate when the input is permitted to change for predictable output performance

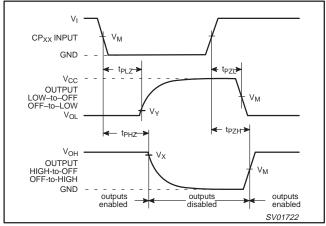
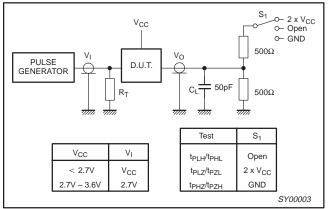
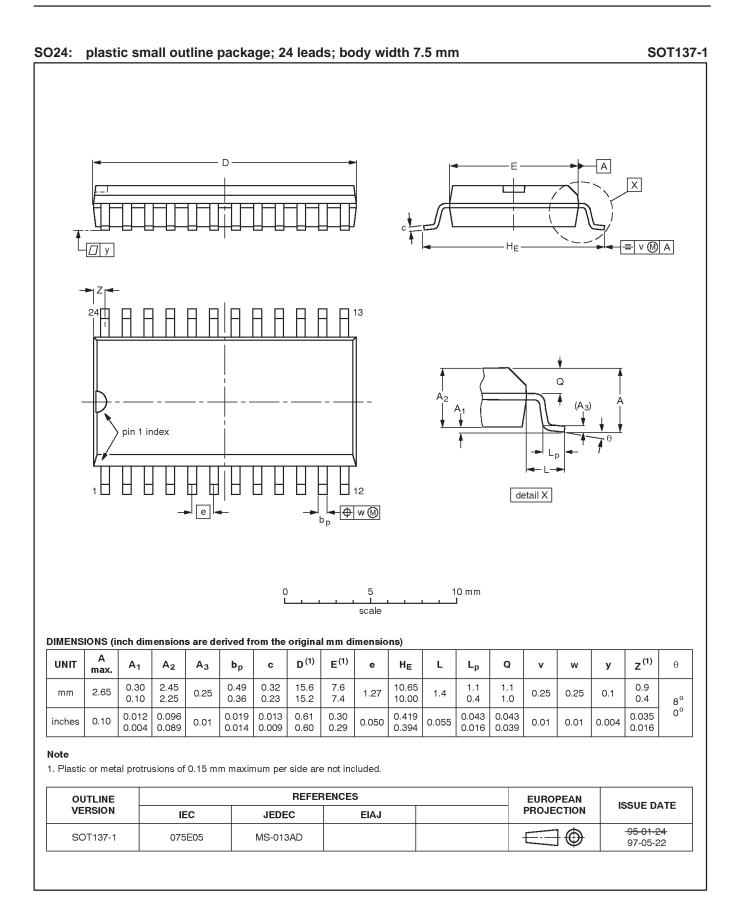
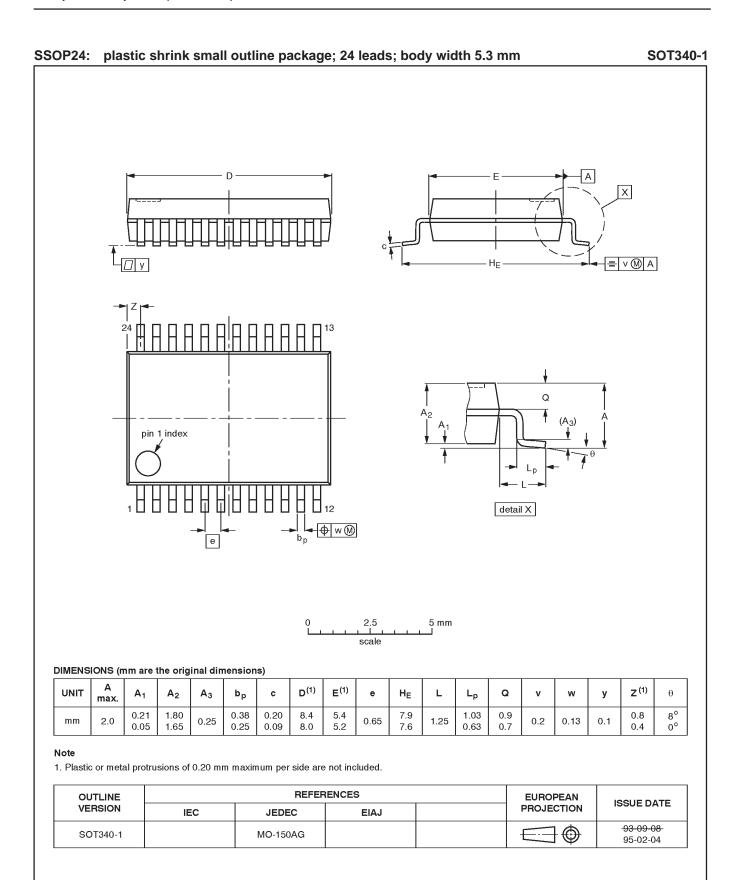


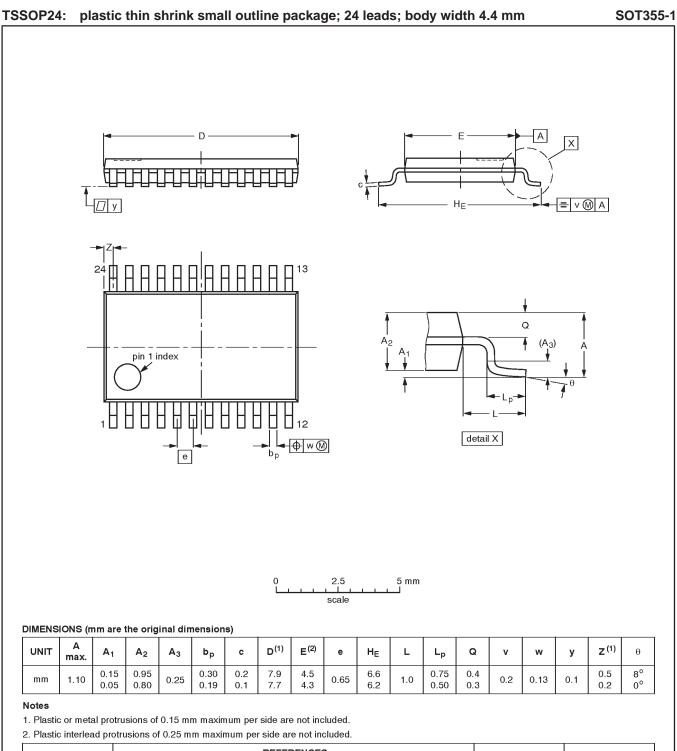
Figure 3. 3-State enable and disable times.

TEST CIRCUIT


Figure 4. Load circuitry for switching times.

74LVC2952A


Product specification

74LVC2952A

74LVC2952A

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT355-1		MO-153AD			-93-06-16- 95-02-04

Product specification

74LVC2952A

NOTES

74LVC2952A

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 800-234-7381

© Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Document order number: Date of release: 08-98 9397-750-04524

Let's make things better.

PHILIPS